DOES SLED TRAINING WITH A LOAD OF 10 KILOGRAMS HAVE AN EFFECT ON THE SPEED OF COLLEGE STUDENT SOCCER PLAYERS?

Muhamad Ikhsan1ABCD, I Dewa Made Aryananda Wijaya Kusuma1ABCD, Imam Syafii1AC, David Agus Prianto1ACD, Bayu Agung Pramono1ACD, and Yanyong Phanpheng2AC

1Universitas Negeri Surabaya
2Loei Rajabhat University

Authors’ Contribution: A – Study design; B – Data collection; C – Statistical analysis; D – Manuscript Preparation; E – Funds Collection

Corresponding Author: David Agus Prianto, E-mail: davidprianto@unesa.ac.id
Accepted for Publication: December 12, 2023
Published: December 22, 2023
DOI: 10.17309/tmfv.2023.6.04

Abstract
Study purpose. Running speed is an ability soccer players need to build attack and defence. There needs to be more research in football that applies sleds using specific loads to improve the running ability of college student soccer players. This study aims to analyze the effect of sled training with a load of 10 kilograms on the running speed of college student soccer players.

Materials and methods. This study uses a quantitative approach with a quasi-experimental design research type, with the research design used being a one-group pretest-posttest design. The sample used in this research was 14 students taken from a population of 95 individuals using random sampling techniques. The study sample used had characteristics of age 18 ± 0.75 years, height 169.42 ± 5.84 cm, weight 58.5 ± 4.21 kg, and BMI 20.44 ± 2.00. Treatment was carried out for six weeks with a frequency of three times a week. The 20-meter sprint speed test was used as an instrument for collecting speed data. The data analysis technique uses a paired samples t-test at a significance level (α) 0.05. The prerequisite test used is the Shapiro-Wilk test.

Results. The research showed increased players’ running speed obtained from the pretest results of 4.48 ± 0.291 and the post-test results of 4.15 ± 0.266 from the 20-meter sprint test.

Conclusions. Based on the results of the paired sample t-test, it can be concluded that there is a significant increase in the running speed of college student soccer players using 10 kg sleds.

Keywords: sled training, speed, soccer.

Introduction
Fundamental movement patterns in soccer require rapid strength development and high power (Pinillos et al., 2014). One of the basic movements in soccer is speed; speed is an essential factor in the success of a soccer game (Modric et al., 2019). Not only that, but speed is also an aspect of the physical components crucial for players in the game of soccer (Beato et al., 2021; Faude et al., 2012). Apart from being a determining factor in dribbling the ball towards the opponent’s goal, the speed at the competitive level of students is also an essential factor in defensive and attacking tactics, as well as transitions between the two phases of the game (Welch et al., 2021). The speed possessed by a player can change the dynamics of a match, create goal opportunities, or even avoid attacks from opponents (Barnes et al., 2014; Brechue et al., 2010). Therefore, a deep understanding is needed regarding how to increase the speed of soccer players to improve the team’s quality and the player’s performance on the field.

One training method that needs to be explored to increase soccer players’ speed is using a sled with a load weighing 10 kg. Sled training is a commonly used approach in developing athlete speed Petrakos et al. (2016), but there has not been much research that examines its effects on soccer players explicitly, especially at the youth level (Cahill et al., 2020; Rumpf et al., 2015). Sled training involves an athlete running while pulling a weighted sled to generate excess load during specific movement patterns in the running (Petrakos et al., 2016). Sled training is adequate for improving sprint
performance using heavier loads (Kawamori et al., 2014; Zisi et al., 2022). However, according to research by Alcaraz et al. (2018) on the use of sleds, no optimal load must be used. However, the load must be adjusted to the desired purpose. Based on the opinion above, research must be conducted to determine effective loads, especially for student college soccer players. Therefore, this study aims to analyze the effect of sled training with a load of 10 kg on the speed of student soccer players.

Research on sledging training with a 10 kg load is important, considering that every soccer player requires high physical performance, such as speed, in various game situations (Aquino et al., 2017). Training using a sled with an additional 10 kg weight can be an interesting training method for increasing player speed, and a deeper understanding of its potential can provide valuable guidance for coaches and players in designing more efficient training programs (Cochrane & Monaghan, 2018; Williams et al., 2021).

One of the key challenges in gaining insights into enhancing the speed of college soccer players is the necessity for further investigation specifically focused on using sled training with a 10 kg load within the context of student-athletes. Speed plays a pivotal role in soccer, and comprehending the efficacy of sled training among youth-level players can offer invaluable insights for coaches and athletes. This study will serve as a vital contribution to addressing the knowledge gap, ultimately leading to the creation of more efficient training regimens to enhance the speed of college-level soccer players. In this way, team quality and player performance on the field can be improved.

It is hoped that the results of this research will provide new insight into the effectiveness of sled training with a load of 10 kg in increasing the speed of student college soccer players, as well as contribute to the development of more innovative and efficient training programs in improving the physical abilities of soccer players at the student level.

Materials and methods

Study participants

Fourteen male student college soccer players participated in the study. Samples were taken using random sampling techniques from 95 students as a population. The age of the participants in this study was 18 ± 0.75 years, with a height of 169.42 ± 5.84 cm, weight 58.5 ± 4.21 kg, and BMI 20.44 ± 2.00.

Study organization

This study used an experimental method with a One-Group Pretest-Posttest Design. The sample used in this research was 14 students college soccer player taken from a population of 95 using random sampling techniques. Fourteen soccer players will do sledging training with a 10 kg load with a training frequency of 3 times a week for six weeks (Alcaraz et al., 2018; Chaalali et al., 2022; McMorrow et al., 2019). The pretest and posttest were carried out one day before and after treatment. The test used is a 20-meter sprint. Before treatment, the samples were given static and dynamic heating for 15 minutes, then divided into two groups of seven people each. The sample ran using a 10 kg sled for 20 meters. In weeks 1 and 2, the sample ran for six repetitions and two sets; in weeks 3 and 4, the sample ran for eight repetitions and three sets; in weeks 5 and 6, the sample ran for ten repetitions with two sets. The six-week interval is a 1:6 ratio where one time works and six-time rest. After treatment, the sample is cooled down. A stadiometer is used to measure the sample's height and weight. The 20-meter sprint test was used as a data collection instrument in this study. A stopwatch is used to measure sample times while running. The sample was given two opportunities to run, and the best time was used as research data.

Statistical analysis

The data analysis techniques used in this research include the normality test using Shapiro-Wilk and hypothesis testing using the paired sample t-test. Paired sample t-test was used to analyze the differences between the pretest and post-test. The significance level (Sig) used in decision-making is as follows: If the value (Sig) <0.05, then H0 is rejected, and Ha is accepted. If the value (Sig) >0.05, then H0 is accepted, and Ha is rejected. Statistical analysis was carried out using IBM SPSS statistics 22.

Results

This research was conducted for six weeks, with 18 times attended by 14 student college soccer players. The results of the descriptive statistical analysis of the pretest and post-test running speed of student college soccer players can be seen in the table below as follows.

Table 1. Descriptive Statistics for Pretest and Post-test Running Speed

<table>
<thead>
<tr>
<th>Indicators</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>14</td>
<td>4.48</td>
<td>0.291</td>
<td>3.89</td>
<td>4.99</td>
</tr>
<tr>
<td>Post-test</td>
<td>14</td>
<td>4.15</td>
<td>0.266</td>
<td>3.63</td>
<td>4.51</td>
</tr>
</tbody>
</table>

The data are presented by means ± SD.

Table 1 above shows the results of the pretest running speed of student college soccer players with a mean value of 4.48±0.291 and post-test running speed results have a mean value of 4.15±0.266.

Table 2. Normality Test Results

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Shapiro-Wilk</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>0.979</td>
<td>14</td>
<td>0.967</td>
</tr>
<tr>
<td>Post-test</td>
<td>0.946</td>
<td>14</td>
<td>0.500</td>
</tr>
</tbody>
</table>

The data are presented by means ± SD and sig. Value: In the Shapiro-Wilk test, the data is normally if the sig. ≥0.05

From Table 2 above, it can be seen that all data has a p-value (Sig.) > 0.05. Specifically, the results of the pretest data value for running speed were 0.967 > 0.05, and the post-test data value for running speed was 0.500 > 0.05. Thus, the entire data is normally distributed data with a level (Sig.) > 0.05.
Table 3. Hypothesis Test Results

<table>
<thead>
<tr>
<th>Paired Difference</th>
<th>95% Confidence Interval of the Difference</th>
<th>T</th>
<th>df</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Error Mean</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>0.33</td>
<td>0.168</td>
<td>0.045</td>
<td>0.233</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The data are presented by means ± SD; *statistically significant difference, mean scores at point comparisons from baseline: sig (2-tailed) value of ≤ 0.05.

Discussion

Sled training with a load of 10 kg has a positive influence on increasing the 20-meter running speed of soccer players. Several factors influence this increase in running speed. The influencing factors include training load, training adaptation, suitability of sprint movements, and muscle activation (Iaia et al., 2009; Rodriguez-Rosell et al., 2017; Suarez-Arrones et al., 2018; Zabaloy et al., 2022). Soccer players’ training load every week will have a physical impact that gradually increases (Buchheit & Mendez-Villanueva, 2013; Fitzpatrick et al., 2018). Players who do regular training will experience anatomical and physiological adaptations that impact their body to adjust the movements and muscle activity required when moving and increase aerobic and anaerobic power capabilities (Aguiar et al., 2015; Cust et al., 2018). Therefore, it is essential to develop specific training methods to improve the physicality of soccer players, especially in the aspect of speed.

One interesting training method to develop to increase running speed is sled training or a running training method by pulling a held weight. A fixed load of 10 kg used in sled training is one of the critical aspects of this research. By using consistent loads for six weeks, players can experience significant improvements in their running speed. Using this load requires players to perform sprint movements with more force, thus providing sufficient stress on the muscles involved in the sprint movement, encouraging adaptation and increasing strength (Alcaraz et al., 2014; Zabaloy et al., 2022). It is important to note that consistent use of weights also helps track a player’s progress regularly throughout the training period. According to (Alcaraz et al., 2018; Chaalali et al., 2022; McMorrow et al., 2019), the ideal training load to perform is 2-3 times a week for six weeks.

Furthermore, another essential factor is the principle of movement specifications in sled training appropriate to sprint movements. Sled training movements have characteristics that correspond to sprint movements when players run in matches or training. That will optimize the muscles that contract during the exercise. Understanding how to sled correctly, including body position, foot placement, and pushing technique, is necessary (Cross et al., 2016). In this way, players can maximize the benefits of sled training with a 10 kg load. Training appropriate to sprint movements will help players build coordination and correct movement habits, essential for achieving optimal running speed (Cross et al., 2017; Zabaloy et al., 2022).

During a six-week training period with a frequency of 3 times a week, anatomical and physiological adaptations in the player's body will occur (Lockie et al., 2012). The movement in sled training with a load of 10 kg requires the lower extremity muscles to work harder to overcome the resistance of the load so that the muscles involved in the movement will experience changes, such as increased strength and endurance. As a result, players can accelerate more quickly. In addition, physiological adaptations, such as increased aerobic and anaerobic capacity, can also occur, which is an essential factor in improving running performance (Kelly et al., 2021; MacInnis & Gibala, 2017; Vorup et al., 2016).

One interesting finding that can be considered in further research is that several samples experienced hamstring symptoms in the second week. That was possible because the quality of the hamstring muscles was not yet ready, and there were many multiples during training. However, further research needs to be done on the quality of the initial hamstring muscles before doing this exercise.

This study has limitations in the absence of a control group to see more clearly whether the absolute increase was caused by sled training. It is hoped that future research can add a control group to compare this exercise.

Conclusions

Based on the results of research and discussion of sled training with a load of 10 kg on increasing the running speed of student college soccer players, it can be concluded that the sled training method with a load of 10 kg, which was carried out for six weeks with a total of 18 meetings, there was a significant increase in the running speed of the players.

Conflict of interest

Authors do not receive endorsement from any organization for submitted work. The author has no relevant financial or non-financial interest to disclose.

References


ЧИ ВПЛИВАЄ ТРЕНИУВАННЯ ІЗ СИЛОВИМИ ТРЕНУВАЛЬНИМИ САНАМИ З НАВАНТАЖЕНЯМ 10 КІЛОГРАМІВ НА ШВІДКІСТЬ ФУТБОЛІСТІВ-СТУДЕНТІВ КОЛЕДЖІВ?

Мухамад Іхсан1АС, І Дева Маде Арьянанда Віджая Кусума1АСД, Імам Шафі1АС, 
Девід Агус Пріанто1АСД, Баю Агун Прамоно1АСД, Яньон Пханпхен1АС

1Сурабайський державний університет
2Леїйский університет Раджабхат

Авторський вклад: А – дизайн дослідження; В – збір даних; С – статаналіз; Д – підготовка рукопису; Е – збір коштів

Реферат. Стаття: 6 с., 3 табл., 33 джерела.

Мета дослідження. Швидкість бігу — це здатність, яка потрібна футболістам для побудови нападу та захисту. Потрібно додаткове дослідження з футболом, у яких застосовують силові тренувальні сани з використанням певних навантажень для покращення бігових здібностей футболістів-студентів коледжів. Метою цього дослідження є аналіз впливу тренування із силовими тренувальними санями з навантаженням 10 кілограмів на швидкість бігу футбольістів-студентів коледжів.

Матеріали та методи. У цьому дослідженні використовують кількісний підхід з квазіекспериментальним типом планування. Для цього використовують план дослідження з попереднім підіумом та підсумовуванням на одній групі. Вибірка, яку використовували в цьому дослідженні, становила 14 студентів, відбірних із генеральної сукупності кількістю 95 осіб із використанням методів випадкової вибірки.

Результати. Результати дослідження показали збільшення швидкості бігу гравців, отримано за результатами попереднього тестування 4,48 ± 0,291 та за результатами підсумовувального тестування 4,15 ± 0,266 тесті на швидкість бігу на дистанції 20 метрів.

Ключові слова: тренування із силовими тренувальними санями, швидкість, футбол.
Information about the authors:

Ikhsan, Muhamad: muhamad.19103@mhs.unesa.ac.id; https://orcid.org/0009-0004-7520-470X; Department of Sport Coaching Education, Faculty of Sports and Health Sciences, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Kota SBY, Jawa Timur 60213, Indonesia.

Kusuma, I Dewa Made Aryananda Wijaya: dewawijaya@unesa.ac.id; https://orcid.org/0000-0002-4939-7294; Department of Sport Coaching Education, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Kota SBY, Jawa Timur 60213, Indonesia.

Syafii, Imam: imamsyafii@unesa.ac.id; https://orcid.org/0000-0002-5440-5834; Department of Sport Coaching Education, Faculty of Sports and Health Sciences, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Kota SBY, Jawa Timur 60213, Indonesia.

Prianto, David Agus: davidprianto@unesa.ac.id; https://orcid.org/0000-0002-7199-5397; Department of Sports Coaching Education, Faculty of Sport Science, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Kota SBY, Jawa Timur 60213, Indonesia.

Pramono, Bayu Agung: bayupramono@unesa.ac.id; https://orcid.org/0000-0002-9308-1289; Department of Sport Coaching Education, Universitas Negeri Surabaya, Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Kota SBY, Jawa Timur 60213, Indonesia.

Phanpheng, Yanyong: yanyong.pha@lru.ac.th; https://orcid.org/0000-0002-9290-2479; Sports and Exercise Science Program, Faculty of Science and Technology, Loei Rajabhat University, 234 Loei - Chiang Khan Road, Loei 42000, Thailand.


Received: 04.11.2023. Accepted: 12.12.2023. Published: 22.12.2023

This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0)